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Abstract. A random central force~network modelbf the erythrocyte membrane skeleton is 
constructed by the relaxation of a bond diluted triangular lattice of Hooke’s law springs under 
tension. The fracture of such a network is studied nymerically by including a maximum value, 
Lb. for the extension of any spring before irreversible breakage. The model shows a mechanical 
instability for values of Lb less than a well defined critical value at any bond fraction above 
the percolation threshold. For undeformed networks that are mechanically stable, the fracture 
characteristics under an applied strain can be quantified as a function of Lb, the bond fiaction 
and the type of sample deformation. 

1. Introduction 

The erythrocyte membrane skeleton is a network of structural proteins attached to the 
cytoplasmic surface of the plasma membrane. This network restricts the lateral diffusion 
of membrane proteins and provides mechanical reinforcement to the membrane of the 
erythrocyte. The structure of the .erythrocyte membrane skeleton has been reviewed by 
Palek and Lambert [I]. The principal structural proteins in  the^ skeleton responsible 
for its mechanical rigidity are spectrin and actin. Spectrin is a flexible, rod-shaped 
protein comprising two subunits which associate side-to-ride %o form a heterodimer. The 
heterodimers associate head-twhead into tetramers which form the bonds of a network. 
Actin oligomers form the nodes of the network, binding typically six tetramers by the tail. 
The network structure is, on average, well represented by a triangular lattice [2] .  Defects in 
the membrane skeleton result in spectrin-free regions of the network which can significantly 
alter the mobility of proteins within the membrane as well as the mechanical properties of 
the irytirocyte. 

Saxton [3] introduced a simple random central force network model of the erythrocyte 
membrane skeleton generated by the random bond dilution of a triangular lattice of Hooke’s 
law springs under tension and shldied the geometrical properties of the network, in particular 
the distribution of pore sizes. The model was based on the stretched spring net of Tang 
and Thorpe [4] who have presented a systematic study of the linear elastic properties of the 
elastically isotropic system as a function of the bond fraction. Experiments have measured 
the shear modulus of the erythrocyte membrane [5,6] and show a temperature dependence 
consistent with a model comprising a random network of stretched springs. However the 
correspondence of the stretched netmodel to the erythrocyte membrane skeleton, in regard 
to the elastic behaviour under large deformations and the mechanisms leading to fracture, 
is less clear. 
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The fracture failure of random networks, being a dynamical process, is an inherently 
more difficult process to study and simulate than elasticity. Nevertheless, several authors 
have made studies of some aspects of the fracture of central force networks of harmonic 
springs under an applied stress or strain. Ashurst and Hoover [7] investigated the fracture 
of a two-dimensional triangular lattice of identical particles interacting through a truncated 
Hooke’s law force by molecular dynamics, while Beale and Srolovitz [8], Hansen, Ronx and 
Hemann [9] and Sahimi and Goddard [lo] have all used Monte Carlo methods to study 
the rupture of two dimensional lattlces of springs with three general classes of disorder: (i) 
random bond deletion, (ii) randomly distributed spring fracture lengths and (iii) randomly 
distributed spring force constants. These studies have shown the fracture process to be a 
complex interplay of the quenched disorder in the system and the redistribution of local 
stresses in the network as the fracture proceeds by the formation and growth of cracks. 

In general, the growth of cracks in a disordered system is a non-linear, non-equilibrium 
phenomenon which does not usually occur at random, but is dependent upon the stress or 
strain field around the cracks. In contrast the static and linear elastic properties of disordered 
systems are usually modelled by percolation networks in which the bonds are cut at random 
[ll]. Under certain conditions the accumulation of damage and growth of cracks could 
take place essentially at random and a percolation process would then describe the fracture 
phenomena. Indeed it has been argued [lo, 121 that in the limit of infinite disorder of the 
spring fracture threshold, the fracture of central force networks is equivalent to a percolation 
process. However, in real materials and most discrete models of mechanical breakdown 
disorder is finite and thus fractured and percolation networks differ. 

The similarities and differences between fracture and percolation processes have been 
investigated by Sahimi and Arbabi for percolation networks with central and bond-bending 
forces [13,14]. For systems which are macroscopically homogeneous, regardless of the form 
of the disorder distribution, the initlal stages of both fracture and percolation processes are 
very similar with bonds that are broken according to any failure criterion being distributed 
essentially at random throughout the network. In these initial stages, stress enhancement at 
the tip of a microcrack is insufficient to ensure that the next bond to break will be at the 
tip of the microcrack. However, as microcracks nucleate the effect of stress enhancement 
increases and beyond a certain point (typically around the maximum in the stress-strain 
curve) there will be no similarity between fracture and percolation processes. 

In regard to the fracture failure of randomly diluted central force networks under tension, 
only for networks which are in the limit of small disorder or near a percolation threshold is 
the situation somewhat clarified. Saxton’s stretched spring network model of the erythrocyte 
membrane skeleton constitutes an example of a system in the intermediate regime, where 
there is a strong short-range ordering of the bonds but long-range disorder. The short- 
range bond correlations can be expected to have a major influence on both the fracture 
mechanism and the stress-strain curve. In this paper the fracture of two-dimensional bond 
diluted triangular networks under tension is investigated by assigning a single load limit 
to the network springs which irreversibly break if the spring is extended beyond a critical 
length using an energy minimization method. A description of the model and the simulation 
method is given in the following section. In section 3 the mechanical stability of undeformed 
network is investigated to determine the range of parameters over which a macroscopic stress 
or sixain can be applied to the network. The fracture characteristics of the model network 
under applied strains is studied in section 4 and the paper concludes with a discussion of 
the results. 
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2. Model and simulation method 

An elastic network is constructed from a lattice where all the bonds between nearest- 
neighbour sites are Hooke’s law springs. The sites of the initial lattice define the nodes of 
the elastic network. The Hooke’s law spring connecting nodes i and j ,  located at rt and rj 
respectively, is characterized hy a force constant K ,  a natural (unsixetched) length of zero 
and a fracture length Lb.  The elastic potential energy for this model is given by [4] 

E = + x ’ ~ i ~ ( l r ~  -rjl)z (1) 
rcj  

where the prime denotes that the summation is only over nearest-neighbour bonds and 
KtJ = K or 0 depending upon whether the bond is present or absent. The force Fi on ith 

~ node of the network is given by 
~ 

where S, = (r, - rJ f [r, - r, I is the unit vector between nodes i and j .  The equilibrium 
condition for the network is that the total force acting on each node of the network must 
vanish, namely 

Fi = -aE/ar, = 0 (3) 

for all i. For an undiluted network, the sites of the lattice will correspond to equilibrium 
positions of the network nodes since the forces exerted on each site by the stretched springs 
balance each other. However, following bond dilution of the lattice, this force balance is 
destroyed and the network must deform so as to move the nodes of the network to their 
equilibrium positions which may be far away from the corresponding original lattice sites. 

In this paper a diluted lattice is generated by randomly removing bonds from a two- 
dimensional fziangular lattice. The resulting random network is relaxed to equilibrium by 
solving purely dissipative equations of motion for the nodes of the network given by [I51 

for all i, where q is a fraction coefficient. During the relaxation if any bond is stretched 
to a length greater than the spring fracture length L b  it is irreversibly broken. Thus for 
sufficiently small values of Lb there will be a decrease in the number of bonds in the 
system during the relaxation to equilibrium. The bond fraction of the system is given by 

where N,, is the number of nodes in the system. If po denotes the initial bond fraction of 
the system prior to relaxation, then in equilibrated networks p < po. 

The coupled equations of motion for the nodes of (2) and (4) are solved numerically 
using the Euler method [16]. Specifically, during the iteradon procedure, the position of 
node i is determined from the previous configuration by I 
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where the parameter (Y = A t / q  (or the time step A t )  is adjusted to ensure the convergence 
of the iteration. The time step should not be too large, since at each step in the iteration 
bonds whose length exceeds Lb must be irreversibly broken. Typically a value of a' 6 0.1 
was used in this work. The iteration process should stop when the force on every node 
of the network is zero. However, in practice, an appropriate small value for the force on 
any node, lF,,,I. is chosen that is good enough to give the final precision required. Thus 
the relaxation procedure is terminated when lFjl < lFml for all i. The elastic energy per 
unit area of the equilibrium two-dimensional network is denoted EO and the tension T is 
determined from the force per unit length perpendicular to an imaginary line through the 
network. 

In this paper an initial hiangular lattice comprising ND nodes was embedded in a 
simulation cell of size L, x L, with periodic boundary conditions to maintain the network 
tension [4]. The nearest-neighbour lattice spacing defines the unit of length and restricts 
the range of physical values for spring fracture length in this model to Lb > 1 .  The force 
constant of the spring sets the energy scale of the model. A maximum force on any node of 
IF, I/K = was used to terminate the relaxation procedure. This typically corresponded 
to errors in Eo/K for the equilibrated network of order Such a choice leads to etrors 
in the calculated elastic properties of equilibrium networks prior to fracture which are less 
than the statistical uncertainty. 

The fracture of the random network under tension was simulated by applying a series 
of small uniform strains of magnitude E to the sample. Following each application of the 
strain, the deformed network was relaxed back to equilibrium and the x component of 
the tension, i"', in the network calculated. If the network had fractured, i.e. Tx = 0, the 
sequence of deformations was terminated. Otherwise additional cycles of deformation and 
relaxation were applied until fracture of the sample occurred. Three different types of strain 
deformation were considered: 

(a) uniaxial extension in the x-direction, in which the system was deformed according 

(7) 

(8) 

(9) 

to 

x* = (1 + E ) X  and y* = y 

x* = (1 C E ) ~  and y* = ( 1 + ~ ) y  

x* = (1 + E ) X  and y* = y/(l + E )  

(b) uniform expansion when 

(c) compressiodexpansion at constant sample area in which 

where the asterisk denotes coordinates in the deformed system. 

x-direction with the elongation of the sample in the x-direction being given by 
Thus for E > 0, the sample undergoes a series of elongational deformations in the 

(L; - L,) /L ,  = L:/L, - 1 = (1 + €)N (10) 
where N is the number of strain cycles applied. Note that the deformations @) and (c) of 
uniform expansion and compression-expansion are identical to those used to determine the 
two independent linear elastic moduli in the small deformation limit 1161. 

The results presented here were averaged over ten random initial configurations for each 
set of parameter values with N. = 1968, L, = 41 and L, = 24.,/3. The finite size scaling 
of the linear elastic and fracture properties has been studied by Sahiimi and Arbabi 1141 
who investigated percolation networks with central and bond-bending forces in both two 
and three dimensions. 
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3. Mechanical stability of the undeformed network 

The mechanical stability of the undeformed networks was first investigated and figure 1 
shows the elastlc energy per unit area (Eo)  of the equlibrium network, which Tang and 
Thorpe [4] have shown to be identical to the isotropic network tension (T}, as a function 
of L b  for a number of values of the initial bond fraction PO above the percolation threshold 
p c  = 0.347 [14]. First note that the qualitative features of the results are the same for all 
values of po with (Eo) showing a distinctive sharp reduction from a constant value to zero, 
corresponding to sample fracture, as a function of decreasmg Lb. For any value of po there 
clearly exists a critical value of Lb above which (Eo) is independent of Lb and has a value 
equal to that obtained for Lb + W. For values of Lb lower than this critical value, (Eo) is 
a monotonic decreasing function of Lb. 

1.0 1.5 2.0 2.5 3.0 

L b  

Figure 1. Elastic energy per unit area (Eo) (in units of K) as a function of lhe spring fracture 
length Lb for different values o f  Ihe initial bond fraction: pa = 0.8 (+), po = 0.85 (A), 
pa = 0.9 (0) and pn = 0.95 (U). 

The drop in the equilibrium energy per unit area with the onset of sample fracture 
is associated with a reduction in the number of bonds in the simulation cell due to their 
irreversible breakage during relaxation and indeed the mean bond fraction is a monotonic 
decreasing function of Lb once the critical value of L b  is passed. However, in contrast to 
the large fall seen in (Eo}, over the same range of L b  values there is only~a small decrease 
in (p). If the bond fraction at~sample fracture is denoted pf, 'then a plot of (pf) against po 
for the undeformed network displays a linear relationship with (pr) = 0.07 + 0.88 po for 
0.55 <. po < 0.95. Thus the mean bond fraction at sample fracture (pf} is well above pc 
for the range of po considered here. Since not many bonds are broken during relaxation, 
the dramatic change in (EO) occurring with the onset of sample fracture is the result of 
a significant alteration to the equilibrium bond length distribution. Thus the mechanical 
stability of the network is seen to be conlrolled by a relatively small number of highly 
stretched bonds in the network, whose breakage leads to mechanical failure of the sample. 
These findings are consistent with the behaviour seen  in the fracture of three-dimensional 
random central force network models of gels 1171. 

= 1 the critical value of Lb corresponding to the 
onset of fracture is unity. Furthermore for po -i pc  the critical value of Lb corresponding 

From the definition of the model,'for 



to fracture tends to infinity. Thus interest focuses on the intermediate range of pc  c po < 1. 
Figure 1 shows that for values of po close to unity, the fracture transition is sharp, almost 
discontinuous, with a critical value for Lb corresponding to fracture also close to unity. 
For example, at po = 0.95 the critical value of Lb corresponding to the onset of fracture 
is Lb N 1.7. But as po is reduced the spring fracture length Corresponding to the onset 
of sample fracture is seen to shift to larger values and the transition region becomes much 
more rounded and extended. The rounding of the transition is a result of finite size effects 
[14], since the sample fracture is associated with the breakage of only a small number of 
bonds. 

4. Fracture under applied strain 

Above it was shown that for po > pc the undeformed network is mechanically stable for 
a sufficiently large value of L b  and a deformational strain can be applied. In this paper 
three different types of applied strain are considered: uniaxial extension, uniform expansion 
and compressiodexpansion. Figure 2 shows the characteristic stress-strain curves, namely 
the n component of the tension (G) as a function of the sample elongation (Lz/Lz - I), 
for the three deformational strain types applied to networks under tension at an initial 
bond dilution of po = 0.9 and a spring fracture length of L b  = 2.5. In addition figure 3 
shows the dependence of the mean bond fraction ( p )  on the sample elongation (L;/Lx - 1) 
for the shess-strain curves of figure 2. In all of the three cases considered, for sample 
elongations up to the onset of fracture, (Tx) is non-decreasing and the mean bond fraction 
is constant with ( p )  = po. Furthermore the system is reversible in the sense that the sign 
of the elongational strain may be reversed to recover the original undefonned network; but 
for greater sample elongations, (T,) and ( p )  are reduced as bonds are irreversibly broken 
during relaxation and the original undeformed network cannot be recovered by reversing 
the applied strain. 

3.5 

3.0 

2.5 

2.0 

I;̂  1.5 

1.0 

0.5 

0.0 
0.0 0.2 0.4 0.6 0.8 

L&;1 
I 

Figure 2. x component of the tension (T,) (in units of K) as a function of the sample elongation 
in the x direction Lz/Ls - I for initial bond fraction PO = 0.9, spring fraction Lb = 2.5 and 
three different forms of applied strain: compressiodexpansion (U), uniaxial extension (0) and 
uniform expansion (A). 
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Since the act of uniform expansion does not alter any of the relative locations of the 
nodes in an equilibrated network unless a bond is broken, fracture under uniform expansion 
is intimately related to the spontaneous mechanical instability of the undeformed network 
studied in the previous section. Thus from figure 1 it is known that for Lb = 2.5 the 
network will only be able to support any uniform expansion for po > 0.8. For the case 
of uniform expansion with po = 0.9 and LI, = 2.5 shown in figure 2, (TJ is seen to be 
independent, within statistical error, of the sample elongation until the onset of fracture at 
(L:/L, - 1) N 0.36. Thus prior to fracture the increase in the stored elastic energy of 
the system is compensated by the increase in the area of the simulation cell resulting from 
uniform expansion. 

Next consider the average stress-strain curves for compressiodexpansion and uniaxial 
extension. Figure 2 shows that both types of deformation show a monotonic increase in 
(T,) with sample elongation prior to onset of fracture after which any increased elongation 
leads to a dramatic and irreversible decrease in (TI) associated with a small decrease in 
the mean bond fraction. Compressiodexpansion and uniaxial extension differ from uniform 
expansion in that deformation of the sample leads to a reorganization in the location of the 
nodes within the sample without any irreversible breakage of bonds. This reorganization 
of the network under deformation allows it to support ,pater applied strains prior to 
fracture. The stress-strain curve for uniaxial extension shows a linear dependence of (Tz) 
on the sample elongation up to a maximum value for the x component of the tension, 
(TZ)-. For the case Lb = 2.5 and po = 0.9 figure 2 shows (TI)- N 2.0 for uniaxial 
extension which corresponds to a sample elongation of (L:/L,  - 1) N 0.4. By way of 
contrast, for compressiodexpansion deformations the stress-strain curve is concave prior 
to the onset of fracture and so for any given sample elongation (z) must be greater 
for compressiodexpansion than for uniaxial strain. Furthermore the maximum sample 
elongation prior to the onset of fracture is also greater for compressiodexpansion than 
for uniaxial extension. The average strain-stress curve for compressiodexpansion of a 
network with Lb = 2.5 and po = 0.9 in figure 2 shows a maximum at a sample elongation 
of (L:/L,  - 1) N 0.5 with (E),,,= N 3.44. 

Figure 3 shows that for all three types of sample deformation ( p )  is a monotonic 
decreasing function of the sample elongation from the elongation Corresponding to (TX)- 
to that corresponding to fracture. Note that (pf )  is significantly smaller for the case of 
uniform expansion than for either compressiodexpansion or uniaxial extension, although in 
all three cases (pf )  >> pc.  Thus sample fracture under applied strain is also seen to be the 
result of crack growth and is not a percolation process. 

For all three types of deformation, the principal role of the spring fracture length is 
to control the maximum sample elongation prior to fracture. By way of example, the Lb 
dependence of the stress-strain curve for a network with pa = 0.9 subject to uniaxial strain 
is shown in figure 4 with the corresponding dependence of the mean bond fraction on the 
sample deformation shown in figure 5. From figure 4 it is immediately apparent that the 
shape of the stress-strain curve is essentially independent of Lb for all values of Lb greater 
than that required for mechanical stability of the undeformed network. For the case shown 
in figure 4 of uniaxial strain applied to a network with po = 0.9, this requires L b  > 1.8. 
(TJ- and the sample elongation corresponding to (Tx),- are both approximately linear 
increasing functions of Lb. For Lb > 2.0 the shape of the curves plotting the mean 
bond fraction against sample deformation are also essentially independent of Lb. The 
sample elongation corresponding to the initial breakage of bonds is an approximately linear 
increasing function of Lb. Only as Lb is reduced toward the value at which the system is 
unable to support any deformation without bond fracture during relaxation is there a small 
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0.9 

0.89 
A 
0. 
V 

0.88 

0 2 

Figure 3. Bond fraction ( p )  as a function of the 
sample elongation in the x direction LZIL, - 1 
for initial bond fraction po = 0.9, spring fraction 
Lb = 2.5 and three different forms of applied strain: 
compressionfexpansion (O), uniaxial extemion (0) and 
uniform expansion (A). 

Figure 4. x component of the tension (Ts) (in units of 
K )  as a function of the sample elongation L:IL,  - 1 
far a network under uniaxial strain with initial bond 
fraction PO = 0.9 and three different values of the 
spring fracture length: Lb = 2.0 (A), Lb = 2.5 (0) 
and Lb = 3.0 (0). 

change in the shape of the mean bond fraction against sample elongation curve. 
As the initial bond fraction of the network is reduced for a given spring fracture length, 

the maximum sample elongation prior to the onset of sample fracture is reduced until the 
undeformed network is no longer mechanically stable. Figure 6 shows the dependence of 
the average stress-strain curve upon the initial bond fraction for a network with spring 
fracture length Lb = 2.5 under uniaxial extension. The sample elongation corresponding 
to (TX),,,= is seen to be an approximately linear increasing function of po for po 2 0.65, 
while for po e 0.65 the network is unable to support any uniaxial extension without the 
irreversible breakage of bonds. If th mean bond fraction at fracture (pr) is plotted against 
the initial bond fraction PO for the case shown in figure 6 of the uniaxial extension of a 
network with Lb = 2.5, a linear relationship with (pf) = 0.02 + 0.95 po is seen to hold 
over the range 0.55 < PO < 0.95. Thus (pi) is greater than the percolation threshold pc 
and fracture under applied strain within this model does not correlate with the onset of a 
percolation threshold, but is the result of crack formation and growth. Similar behaviour is 
observed for compressiodexpansion deformations. 

For Lb = 2.5, figure 1 shows that under uniform expansion the network will not support 
any deformation prior to fracture for po e 0.8. For po 2 0.8 however, the sample elongation 
which the network will support prior to fracture is again an approximately linear function 
of PO. Thus there are a range of initial bond fractions for which networks will reversibly 
support uniaxial extension and compressiodexpansion deformations, but will not support 
any uniform expansion without the irreversible fracture of some network bonds. 

5. Discussion 

By introducing a fracture length to the network springs, which can irreversibly change the 
network topology during the relaxation to equilibrium, it has been shown that the fracture 
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Figure 5. Bond fraction ( p )  as a function of the sample Figure 6. x component of the tension (T,) (in units of 
elongation L:/L,-I for anetwork under uniaxial strain K) as a function of the sample elongation L:IL, - 1 
with initial bond fraction po = 0.9 and three different for a network under uniaxial strain with spring fracture 
values of the spring fracture length: Lb = 2.0 (A), le@ Lb = 2.5 and five different values of the initial 
Lb = 2.5 (0) and Lb = 3.0 (0). bond fraction: po = 0.65 (x), po = 0.75 (+), 

po = 0.85~ (A), PO = 0.9 (0) and PO = 0.95 (0). 

of a random central force network under tension can be quantified as a function of the initial 
bond fraction and the form of the applied strain. Fracture of the model network under a 
uniform extemal load for po > pe is a result of the growth of cracks within the sample 
which depends upon the local environment and hence differs from a percolation process. 
The model clearly shows that a reduction of the bond fraction enhances the likelihood of 
rupture and thus correlates well with the behaviour expected of an erythrocyte membrane 
skeleton. However it should be noted that for any given value of the spring fracture len ,~ ,  
the bond fraction at which the network is unstable to deformation is greater for uniform 
expansion than for uniaxial extension or compressiodexpansion types of deformation. Thus 
mechanical stability criteria for the erythrocyte membrane skeleton within this extension of 
the Saxton [3] model will depend upon the form of the applied strain~with the model being 
least stable to uniform expansion. 

Finally note that the stretched spring model presented here is of restricted validity, since 
the use of only central forces between nodes restricts attention to networks in which there 
is no direct interaction between the bonds of the network. Further extensions of Saxton’s 
random network model of the erythrocyte membrane skeleton will require the introduction 
of non-central forces between nodes of the network to model the bond-bond interactions. 
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